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Abstract. MODIS vegetation indexes time series have been widely used
to build land cover change maps on large scales. In this scope, to obtain
good quality maps using supervised classification methods, it is crucial
to select representative training samples of land cover change classes. In
this paper, we evaluate two clustering methods, Hierarchical and Self-
Organizing Map (SOM), to assess land cover samples of MODIS vegeta-
tion indexes time series. As we show, these techniques are suitable tools
for assisting users to select representative land cover change samples from
MODIS vegetation indexes time series. We present the accuracy of both
methods for a case study in Ipiranga do Norte municipality in Mato
Grosso state, Brazil.

Keywords: time series clustering, MODIS vegetation indexes, land cover
change classification, self-organizing map (SOM)

1 Introduction

Remote sensing images play a crucial role in land cover change classification on
global and continental scales. Recently, time series of vegetation indexes, such
as NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vege-
tation Index), from MODIS (Moderate Resolution Imaging Spectroradiometer)
products have been widely used to build land cover change maps on large scales
[1, 2, 4, 3].

Aguiar et.al [1] identify pasture land and its different levels of degradation
in Mato Grosso do Sul state, Brazil, using MODIS NDVI time series and a J48
classifier with wavelet technique. Arvor et.al [2] use MODIS EVI time series to
quantify the evolution of agricultural area from 2000 to 2006 in Mato Grosso
state, Brazil. Bagan et.al [3] propose an approach to classify land cover from
MODIS EVI time series using the Self-Organizing Map (SOM) neural network
technique and present a case study in eastern China from March to December in
2002. Maus et.al [4] propose an algorithm called Time-Weighted Dynamic Time
Warping (TW-DTW), based on the classical Dynamic Time Warping (DTW)
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method, for land cover and land use classification and present a case study using
MODIS EVI time series in the Porto dos Gaúchos municipality in Mato Grosso
state, Brazil.

In general, supervised classification methods require a training step, which
consists in gathering training samples to represent the classes to be identified.
The quality of such samples is crucial in the classification process. Representative
samples of classes lead to good classification results. Therefore, specially in land
cover change classification, there is a need for techniques that help users to select
representative land cover change samples from vegetation indexes time series of
remote sensing images.

Remote sensing time series usually contain interferences of spatio-temporal
phenomena that impact on land use and land cover monitoring, i.e. atmospheric
influences or cloud cover. NDVI index has several limitations that affect the ac-
curacy of classification, including atmospheric conditions. To account for these
limitations, EVI index was proposed to remove residual atmosphere contamina-
tion [7]. However, Heute et. al [6] studied vegetation index products and argued
that EVI and NDVI of the biotic formation in different regions were sensitive
to seasonal change, land cover change and biophysical parameters change. They
demonstrated that NDVI was highly relevant to EVI and the value of NDVI was
always bigger than EVI when the soil background and the atmospheric aerosol
vary less [6].

In this context, time series clustering techniques can assist in an exploratory
analysis to evaluate which vegetation indexes are better to select representative
land cover change samples. Representative samples allow to extract temporal
patterns that concern the seasonal periodicity of vegetation. Thus, such tech-
niques can improve the training step of the land cover change classification.

It is important to develop an appropriate and validation scheme to assess the
performance and limitations of clustering algorithms. In this paper, we present a
ground truth based comparative study to evaluate the accuracy and performance
of two clustering methods, Hierarchical and Self-Organizing Map (SOM), for
assessing the separability of land cover samples of MODIS vegetation indexes
time series [5, 10, 11]. In this work, we present the accuracy of these two clustering
methods for a case study in Ipiranga do Norte municipality in Mato Grosso state,
Brazil.

2 Background

In this section, we present concepts and algorithms used in our study: the Self-
Organizing Map (SOM) Neural Network, the Dynamic Time Warping Distance
(DTW) and the Hierarchical Clustering Algorithm.

2.1 SOM Neural Network

A SOM (Self-Organizing Map) is an unsupervised neural network that consists in
competitive learning for providing a topology-preserving mapping from a high-
dimensional input onto a low-dimensional output. The structure of a SOM is



MODIS Vegetation Indexes Time Series Clustering 3

composed by input and output layers. The training data or input data are in
the input layer whereas the output layer is formed by a set of neurons that are
trained to extract patterns from the input data [5].

An important property of SOM is the neighborhood relationship among neu-
rons in the output layer, i.e., vectors in the input layer with similar characteris-
tics can be mapped into either a neuron that represents those characteristics or
neighboring neurons in the output layer [3].

Each neuron j in the set of J neurons has a n-dimensional weight vector
wj = [wj1, . . . , wjn] associated to it. At each training step t, an input vector
x(t) = [x(t)1, . . . , x(t)n] is randomly chosen, and then the Euclidean distance
Dj is calculated between this input vector and each neuron j for all the neurons
in the output layer (equation 1).

Dj =

N∑
i=1

√
(x(t)i−wji)2. (1)

The next step is to determine the Best-Matching-Unit (BMU), i.e. the neuron
db with weight vector closer to x(t) (equation 2):

db = min {D1, . . . , DJ} . (2)

The weight vector of the neuron chosen from the BMU is updated, i.e. ad-
justed to be closer to the input vector (equation 3. The weights of the neurons
Nb(t), neighbors of the BMU, are also updated with a smaller weight.

wji(t+1) = wji(t)+α(t)[x(t)i−wji(t)], (3)

In equation 3, α(t) is the learning rate, set as 0 < α(t) < 1. An iteration
ends when all vectors of the input layer are trained, then α(t) must be reduced
[8]. The number of iterations must be high in order to allow the neurons to fit
accurately to the data sets [9].

2.2 Dynamic Time Warping Distance

Dynamic Time Warping (DTW) is a classical algorithm that produces the most
robust distance used to align two time series, allowing the alignment of similar
sequences that match even if they are out of phase in the time axis [13].

Consider two time series Q = [q1, . . . , qi, . . . , qn] and C = [c1, . . . , ci, . . . , cm].
The first step of DTW is to compute a cost matrix, n×m, given by the squared
distance between the elements of the two time series:

Ψi,j = (qi−cj)2 (4)

From Ψ , we can find the best matching between two time series, getting
an optimal path that minimizes the cost warping. This warping path can be
found using dynamic programming, transforming a complex global problem into
a number of local optimization subproblems [11].
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di,j = Ψi,j+ min


di−1,j

di−1,j−1

di,j−1

(5)

2.3 Hierarchical Clustering

Hierarchical Clustering is another well-known method used to cluster data points.
There are two types of hierarchical clustering: agglomerative and divisive. In this
paper we use the agglomerative type, where each sample starts in its own cluster,
and the clusters are then grouped with large clusters based on linkage criteria,
until all samples are contained in a single cluster.

The linkage criterion determines the distance between sets of data as a func-
tion of the pairwise distances between the data [12]. There are several linkage
criteria, some of them are presented next.

Ward’s criterion merges two clusters that result in the smallest increase in the
value of the sum-of-squares variance. At each clustering step, all possible mergers
of two clusters are tried. The sum-of-squares variance is computed for each clus-
ter, and the one with the smallest value is selected [11]. Other popular linkage
criteria are average, single and complete. All these are used to determine which
pair of clusters are going to be merged in the next step of the hierarchical algo-
rithm: the average criterion calculates, for each pair of clusters, the average dis-
tance between all data points in each cluster; the single criterion calculates the
distance between two clusters A and B as Dist(A,B) = mina,b d(a, b), and the
complete criterion calculates the distance as Dist(A,B) = maxa,b d(a, b) [12].
For each criterion, the smallest distance between the two clusters is selected and
the clusters are merged, and the process repeated until there is only one cluster
with all data points.

A dendrogram can be used to visualize the hierarchy obtained from the hier-
archical clustering method. The dendrogram helps visualization of the merging
of the clusters, and can be used to evaluate the height in where the largest change
in dissimilarity occurs, so it can be cut at such height for the clusters extraction.
It is also possible to specify the number of clusters and then cut the dendrogram
in such a way that the chosen number is obtained [11, 10].

3 Materials and Methods

3.1 Data

The data used in this study was extracted from MODIS sensor of the Terra satel-
lite developed by NASA. This sensor monitors the state of Earth’s environment.
The MOD13Q1 product from MODIS provides per pixel values of vegetation
indexes. These indexes are used for global monitoring of vegetation conditions
and land cover classifying on large spatial scales [14]. In this product, there are
two vegetation layers, the Normalized Difference Vegetation Index (NDVI) and
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Enhanced Vegetation Index (EVI) [15]. Time series MODIS data, used in this pa-
per, produce vegetation indexes at each 16-day with 250-meter spatial resolution.
During plant growth periods, different vegetation styles can be distinguished by
vegetation indexes time series [17].

The study area comprises a region of 9.6km×8km and it is located in Ipiranga
do Norte (Mato Grosso, Brazil) municipality as shown in Figure 1.

Fig. 1. The area of study corresponds to approximately 76.8Km2 in the Ipiranga do
Norte municipal

The study region was chosen considering the existence of a dataset containing
603 ground truth sample points, from 2007 to 2013. This dataset is organized
in five classes: 138 samples for “forest”, 68 for “cotton-fallow”, 79 for “soybean-
cotton”, 134 for “soybean-maize” and 184 for “soybean-millet”. Each data sam-
ple has the spatial location (latitude and longitude), the start and end dates,
with an one year interval, and the label representing the class.

From the ground truth, the MODIS vegetation indexes time series of each
sample was extracted, for each spatial location and date. In total, we have col-
lected 603 one-year-spanned time series from different years. Figure 2, shows the
EVI and NDVI time series between 2011 and 2012. This time series correspond
to the point lat=−12.0385, lon=−55.9844 for the “cotton-fallow” class.

3.2 Analysis

In order to evaluate the accuracy of the clustering result we use the Shannon
information entropy [16] over all clusters and its capability of representing one
class. If there is confusion between two or more known classes belonging to the
same cluster then the entropy metric will increase up to a maximum. The entropy
e can be obtained for each cluster taking into account all its classes frequencies
pi in each cluster, using equation 6.
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Fig. 2. EVI and NDVI Time series from a random chosen sample point.

e = −
∑
i

pilogpi (6)

This gives us a measure of separability for each cluster and informs how much
a set of samples are distinguishable. In order to get a range from 0 to 1 we just
divide the Eq. (6) by the logarithm of the number of classes obtaining a relative
entropy metric. To compute an overall metric, we just have taken the weighted
average of all clusters with respect to the amount of samples linked to it.

Differently from internal cluster validity indexes (e.g. Silhouette) that aims to
measure compactness and separation between clusters, entropy aims to measure
the clusters from a ground truth and can be viewed as an external cluster validity
index [18]. This choice may overcome the disadvantage of internal cluster validity
indexes in a high dimensionality context, such as time series data, due to the
curse of dimensionality [19].

The clusters were produced by two methods. In the first method, the hi-
erarchical clustering (HC) over a dissimilarity matrix among all sampled time
series using DTW distance. Hence, a dendrogram can be computed according to
a linkage method and once produced, the dendrogram can provide any number
of clusters, from one to the number of samples, just informing a dissimilarity
parameter: those samples with dissimilarity bellow that parameter will be tied
together in a same cluster and all those samples above that value will pertaining
others clusters.

In the second method, which uses the SOM as a preprocessing step of the
HC (SOM+HC), we conducted a SOM neural network before the hierarchical
clustering. In SOM, a neuron, through a weight vector represents a pattern of
samples. These patterns are organized into a meaningful two-dimensional order
in which similar models are closer to each other in the grid than the more
dissimilar ones and the neighboring models are mutually similar,in this way, a
neuron contains all the samples which are mapped to it. This step allows the
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samples to be represented by these patterns. As a result, we have obtained a set of
representative neurons that were used as the input of the hierarchical clustering
step. From them, we compute a dissimilarity matrix using DTW distances, and
what follows is similar with the first method. Hence, the main difference here is
that the hierarchical clustering is being applied to a reduced but representative
number of time series.

Our experiments were conducted using some variations of the methods de-
scribed in previous sections, with different parameters. For the HC method, we
chose the parameters number of clusters (n clusters), vegetation index combi-
nation (bands) and linkage method (linkage). For the SOM+HC method, the
parameters chosen were number of clusters, vegetation index combination, link-
age method, SOM grid size (grid size), SOM learning rates (learnr init and
learnr fin), and SOM iteration steps (iterations). The parameter’s ranges
were defined as described in Table 1.

Table 1. Experiments parameters’ range

Parameter Range Methods

n clusters {3, 5, 7, 9} HC and HC+SOM

bands {EVI, NDVI, EVI&NDVI} HC and HC+SOM

linkage {Ward, average, complete, single} HC and HC+SOM

grid size {49, 81, 121, 169} HC+SOM

learnr init {0.1, 0.2, 0.3, 0.4} HC+SOM

learnr fin {0.02, 0.04, 0.06, 0.08} HC+SOM

iterations {1000, 1200, 1400, 1600} HC+SOM

All possible parameters values were combined producing 48 different exper-
iments for the HC method and 12, 288 experiments for the SOM+HC. As
output of both methods, we have got the same set of samples labeled with the
corresponding computed cluster identification. This information allowed us to
compute the separability level given by Equation 6. The methods are summa-
rized in the Figures 3 and 4.

The experiments produced a database relating each parameter’s values to
the entropy dependent variable. The subsequent analysis were made on this
dataset using descriptive statistics and correlation analysis in order to show the
parameters-entropy behavior.

4 Results

In order to verify how the numeric variables correlate to the entropy we cal-
culated the Pearson correlation. Both HC and SOM+HC methods showed a
similar result. The correlation between the parameter n clusters and entropy

in the case of HC method was −0.55. For SOM+HC method, the n clusters

and grid size correlations against entropy are −0.58 and 0.15, respectively (all
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Fig. 3. Clustering Time Series
Using Hierarchical clustering

Fig. 4. Clustering Time Series Using SOM Neural
Network and Hierarchical clustering

measures have a p-value less than 1.0× 10−7). The n clusters correlation was
expected as a fine grained clustering can capture more subtleties that the data
may present by reducing the confusion and consequently the entropy for each
cluster. However, the positive correlation between SOM grid size may suggest
that this is not the case for SOM stage, at least in the range values used in the
experiments.

The best achievement of HC experiments is shown in the Table 2, which
parameters’ values were n clusters= 5, bands= NDV I, and linkage= Ward.
The resulting entropy was 0.02782576 indicating a reasonably separability be-
tween classes using only the NDVI band. When considering EVI and NDVI
bands, the lowest entropy (0.02872378) was achieved only by increasing the clus-
ters to 9 with the same linkage criterion. The first non Ward linkage criterion
with the lowest entropy comes at 7th position with 0.03011122.

All the HC experiments’ results can be seen in Figure 5. As the number of
clusters increases, the overall entropy stabilizes, suggesting an optimal n cluster

value. The graphs shows that single linkage criterion was outperformed in terms
of separability and so are inadequate to our data samples. Maybe this is the
case for all land use and land cover spectral data as different classes exhibit
considerably variance and are, sometimes, very similar between them. The same
is also observed in SOM+HC experiments where single linkage resulted in
higher entropies. The Figure 6 depicts its entropy results for those experiments
with grid size= 49, iterations= 1000, learnr init= 0.1, and learnr fin=
0.02. Figures 5 and 6 show that the number of clusters depends on the data
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bands and the linkage criterion. For example, using only the EVI band we have
reached a minimum entropy with 7 clusters using Ward linkage while using the
NDVI band the amount of clusters with best separability was 5 for the same
linkage, suggesting that the NDVI band captures more differences among our
sample classes.

Table 2. Separability matrix for the best HC clustering result. The resulting en-
tropy was 0.02782576 from parameters’ values n clusters= 5, bands= NDV I, and
linkage= Ward.

Classes Clust.1 Clust.2 Clust.3 Clus.4 Clust.5

Forest NA NA 138 NA NA

Cotton-Fallow 66 2 NA NA NA

Soybean-Cotton 3 76 NA NA NA

Soybean-Maize NA 1 NA 133 NA

Soybean-Millet NA NA NA NA 184

The lowest entropy was achieved by average linkage criterion that outper-
formed Ward entropies only when the number of clusters were 9. The parameters
used were: n clusters= 9, grid size= 49, iterations= 1000, learnr init=
0.2, learnr fin= 0.04, and bands=EVI&NDVI. The respective separability ma-
trix is shown in Table 3.

Fig. 5. HC experiments entropy results.
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Fig. 6. SOM+HC experiments behavior for fixed parameters grid size= 49,
iterations= 1000, learnr init= 0.2, learnr fin= 0.04

Table 3. separability matrix of the best SOM+HC clustering separability result. The
resulting entropy was 0.02872378 from parameters’ values n clusters= 9, grid size=
49, iterations= 1000, learnr init= 0.1, learnr fin= 0.04, and bands=EVI&NDVI

Classes Clust.1 Clust.2 Clust.3 Clust.4 Clust.5 Clust.6 Clust.7 Clust.8 Clust.9

Forest NA NA 25 113 NA NA NA NA NA

Cotton-Fallow NA NA NA NA NA NA NA NA 68

Soybean-Cotton NA NA NA NA 2 NA NA 74 3

Soybean-Maize NA NA NA NA NA 134 NA NA NA

Soybean-Millet 52 4 NA NA 94 NA 34 NA NA

We can see from the the best separability results (Tables 2 and 3) that some
classes are mixed up inside a same cluster. This is the case of “cotton-fallow” and
“soybean-cotton” for both methods. Specific investigations may provide some
understanding why this may be the case for those classes or if we may consider
discard the confusions cases as outliers or probably miss classified data sample.

Despite the fact that we can obtain the lowest relative entropy by setting
n clusters to the sample size, our results show that the relative entropy drops
rapidly to an inflection point for a low value of n clusters ( 1.5% of the sample
size) after which it decreases very slowly. The existence of such inflexion point
for a low value relative to the sample can give us a measure of data separability.
However, an unexplored question is if such separability is stable.

5 Conclusions

Hierarchical clustering methods has disadvantage that the dissimilarity matrix
is calculated for all given dataset. Then, for big dataset the process becomes
expensive computationally, due to a complexity of O(n2), where n is the amount
of data. Thus, hierarchical clustering may be prohibitive for large datasets.
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In remote sensing context, using hierarchical clustering may become a prob-
lem due the large amount of data. A way to soften the complexity problem is
to use iterative techniques such as SOM to reduce the amount of input data by
creating patterns to represent those data. In this way, the dissimilarity matrix
can be computed with much less data. Here we showed that the results presented
by SOM method produced a good separability compared with hierarchical clus-
tering approach.

Our experiments showed that vegetation indexes and linkage criterion inter-
fere directly in the separability result. An entropy metric was used to assess
class separability on the input data. The samples quality in terms of separability
can be given by the inflexion point exhibited by the entropy against number of
clusters. However, further investigations on stability of cluster validity index are
needed.
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