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A Time-Weighted Dynamic Time Warping method
for land use and land cover mapping
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Abstract—A major recent trend in remote sensing research
is the analysis of satellite image time series for land use and
land cover monitoring and mapping. In this paper, we describe
the Time-Weighted Dynamic Time Warping algorithm, which
improves on previously proposed methods for land cover and
land use classification. The method is based on the dynamic time
warping method that measures similarity between two temporal
sequences. We modified this method to account for seasonality of
land cover types. The resulting algorithm is flexible to account
for different cropland systems, tropical forests, and pasture using
few training samples. The algorithm had better results than other
Dynamic Time Warping variations for land classification. The
method is suitable to make land use and land cover maps and
has potential for large-scale analysis at country or continental
scale, using global data sets such as the EVI time series from the
MODIS sensor.

Keywords—Time series analysis, MODIS time series, Land use
changes, Crop monitoring.

I. INTRODUCTION

Since remote sensing satellites revisit the same place re-
peatedly, we can adjust their images so measures of the same
place in different times are comparable. From a data analysis
perspective, researchers then have access to space-time data
sets. This has lead to growing research on satellite image
time series analysis. Algorithms for analysing image time
series include methods for time series reconstruction [1], for
detecting trend and seasonal changes [2]-[4], for extracting
seasonality information [5], land cover mapping [6], detecting
forest disturbance and recovery [7]-[9], crop classification
[10]-[12], planted forest mapping [13], and crop expansion
and intensification [14], [15].

This paper describes a new image time series analysis
algorithm which improves on previously proposed methods
for land cover and land use classification. Our method uses a
time-weighted version of the Dynamic Time Warping (DTW)
algorithm. DTW works by comparing a temporal signature of
a known event (e.g. a person’s speech) to an unknown time
series (e.g. a speech record of unknown origin) [16]-[20]. The
algorithm compares two time series and finds their optimal
alignment, providing a dissimilarity measure as a result [19].
DTW provides a robust distance measure for comparing time
series, even irregularly sampled or if they are out of phase in
the time axis [21].
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The original DTW algorithm is not well suited for time
series analysis of land use and land cover data. It disregards
the temporal range when finding the best alignment between
two time series [19], [22]. However, when dealing with land
change, we cannot ignore time completely. Each agricultural
crop has a distinct phenological cycle that is relevant for
space-time classification [23], [24]. Consider, for example, the
difference between the phenological cycles for crops, such as,
soybean and corn ranging from 90 to 120 days and sugarcane
from 360 to 520 days. To distinguish between these cycles, it
is useful to include a temporal weighting function in the DTW
method.

Recent papers by [12] and [25] have used DTW for satellite
image time series classification. The method proposed in
these papers sets a maximum time delay to avoid inconsis-
tent temporal distortions based on the date of the satellite
images. The time series is split in one year segments to
match the agricultural phenological cycle in Europe. However,
this temporal segmentation reduces the power of the DTW
classifier. Crops with phenological cycles longer than one year
or taking place in different seasons may not be detected. To
avoid this problem, we introduce a time-weighted extension to
the DTW algorithm, which classifies temporal segments of a
remote sensing time series without splitting it into fixed parts.
This method is flexible to account for multiyear crops, single
cropping and, double cropping. It is also robust to account for
other land cover types such as forest and pasture and works
with a small amount of training samples.

This paper describes the time-weighted DTW algorithm
(TWDTW) for land use and land cover classification and
compares the TWDTW accuracy with the original DTW algo-
rithm without time constraints and with the time delay DTW
proposed by [12]. We show a case study area in the Brazilian
Amazon with high land changes dynamics and compare the
results with other land use and land cover products.

II. METHODS

Remote sensing satellites cycle the Earth at regular intervals,
and thus their data are mappable to a three-dimensional array in
space-time Fig. (1a). Each pixel location (z,y) in consecutive
times, t1, ..., t,,, makes up a satellite image time series (SITS),
from that we can extract land use and land cover information,
such as the SITS in Fig. (1b). In the example, during the first
two years the area was covered by forest, then it was deforested
in 2002. The area was then used for cattle raising (pasture) for
three years. After that, it was used for crop production for three
years from 2006 to 2008.

Let Vg, = (v1,v2,...,0,,) be a time series of a pixel
location (z,y) in consecutive times, t1,...,%,,, where v is
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Fig. 1: (a) A 3-dimensional array of satellite images, (b) a vegetation index time series I at the pixel location (z,y). The arrows

indicate data gaps.

the value of the sensor measure at time ¢. For the satellite’s
coverage, we get a set of time series S = {V1, Vaq,..., V }.
We want to classify time intervals of this set into one of
the possible land use and land cover classes. Each temporal
interval, ideally, corresponds to a stable period of land cover
and land use, that we want to associate with one of our land
classes. For example, suppose a ten year period where in the
first five years the area was covered by forest. The area was
then used for cattle raising (pasture) for two years. After that,
it was used for soybean production for three years. We want to
associate each of these intervals with one of our land classes.

Optical remotely sensed data are affected by cloud cover
that introduces a large amount of noise in STIS, as shown
in Fig. (1b). Inter-annual climate variability also changes the
phenological cycles of the vegetation, resulting in STIS whose
periods and intensities do not match on an year to year basis
[23]. To associate intervals of a SITS with land cover and
land use classes, we need methods suitable for noisy and out-
of-phase time series. We chose the Dynamic Time Warping
(DTW) algorithm because it is suitable for this problem.

The papers by [12] and [25] applied the DTW algorithm
to classify intervals of SITS, such as in Fig. (2a). In this
case, two time series have approximately the same length and
the first and last points in both time series must match. In
practice, crop phenological cycles can vary in an year-to-year
basis, depending on climate conditions and land management,
for example shifting the greenup and dormancy stages of the
vegetation [23], [24]. To avoid possible inconsistent matching
of phenological cycles caused by splitting the time series we
use an open boundary version of DTW, Fig. (2b). The open
boundary method does not require two time series to be of the
same length, and it is suitable to find all possible matches of
one pattern within a long-term time series [26].

The open boundary DTW algorithm disregard the time
dimension and can cause inconsistent phase alignments, e.g.
an winter crop can match in the summer time with low DTW
distance. Therefore, we introduce an extra cost that controls the

time warping and makes the time series alignment dependent
on the dates of the year. This is especially useful for detecting
seasonal crops and for distinguishing pasture from agriculture.

Our classification method using open boundary DTW [26]
requires matching subsequences of the time series associated
with each pixel location to samples of the expected classes.
For each class ¢, we take a set of time series samples Q. =
{U;1,Us, ..., Uy}, where U = (uq,...,u,) is a time series
with n < m (i.e. the pattern length is much shorter than the
sensor time series V). These samples are then used to classify
the intervals of the time series V € S.

The classification runs independently for each pixel location
and has two steps. We start applying the DTW algorithm for
each pattern in Q and each time series V € S. This step
provides information about the matches of the patterns within
the time series. In the second step we use the DTW matches
to build the sequence of land use and land cover maps.

A. Step 1: DTW Alignment

The DTW alignment starts by computing a n-by-m matrix
U, whose elements 1); ; are the absolute difference between
u; € UVi=1,..,,nandv; € VVj=1,..,m. From ¥ we
compute an accumulated cost matrix D by a recursive sum of
the minimal distances, such that

di;j = Yij + min{di-1,j,di—1j-1, dij-1}, (1
that is subject to the following boundary conditions:
%‘,_j i=1,7=1
dij = 22:1 Yir; 1<i<n,j=1 )

Ziﬂ wivk

The Fig. (3) shows an example of the accumulated cost
matrix D. Intuitively, the DTW alignment runs along the
“valleys” of low cost within the accumulated cost matrix D,
that has as many “valleys” as the number of matches between

i=1,1<j<m
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Fig. 2: (a) DTW Alignment between two time series with approximately same length, (b) DTW alignments between a pattern
whose length is much shorter than the time series. The indexes a are starting points and b ending points of each interval in the

long-term time series.
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Fig. 3: Accumulated cost matrix D showing three possible
alignment of the pattern U within the long-term time series
V. The indexes a are starting points and b ending points of
each DTW alignment in V.

U and V. The kth low cost path in D produces an alignment
between the pattern and a subsequence V|Z’; with associated
DTW distance d, where ay, is the starting point and by, the
ending point of the subsequence k [26], as shown in Fig. (3).

Each minimum point in the last line of the accumulated cost
matrix, i.e. d, ; V j = 1,...,m, produces an alignment, with
by and the J; given by,

by = argming(dy;), k=1,.,K 3)

O = dnp, 4

where K is the number of minimum points in last line of the
accumulated cost matrix.

A reverse algorithm, Eq. (5), maps the warping path Py =
(p1,...,pr) along the kth low cost “valley” in D. The algo-
rithm starts in pj—y, = (i = n,j = b;) and ends when ¢ = 1,
ie. pi=1 = (i = 1,j = ay), where L denotes the last point
of the alignment. The warping path P, contains the matching
points between the time series. Note that the backward step in
the Eq. (5) implies the monotonicity condition [17], [26], i.e.

the alignment preserves the order of the time series.

(4,ar = j) if i=1
(i—1,7) if j=1
pi-1 = argmin( di—1,j, 5
di—1,-1, otherwise
dij-1)

The original DTW algorithm does not account for the phase
difference between the time series [22]. However land use
and land cover types have distinct phenological cycles that
are relevant for space-time classification [23], [24]. Therefore,
here we propose a Time-Weighted DTW (TWDTW) based on
the date of each pixel in the satellite image. This time-weighted
version of DTW adds a temporal cost w to the cost matrix U,
whose elements become ; ; = |u; — v;| + w; j. To compute
the temporal cost we propose both a linear

wij = g(ti t;) (6)

and a logistic model with midpoint 3, and steepness «, such

that
1

1 4 e—alg(tit;)=5)’

wij = @)
where g(t;,t;) is the elapsed time in days between the dates
t; in the pattern and ¢; in the time series. We ran many tests
using different values of 5 and . We then used the best global
accuracy performance to set the parameters for the logistic
time-weighted DTW.

B. Step 2: Map building

The DTW algorithm matches each pattern to the input time
series independently from the others. Thus, each interval of
the time series V can fit different patterns. To associate an
interval of the time series V to a land cover and land use
class, we choose the best fitting pattern, i.e. the pattern with
the lowest DTW distance in the interval. After finding the best
fit, we can produce maps that show a land cover and land use
classification for a given period.
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Fig. 4: Open boundary DTW alignment. Dark and light shades
represent the alignments of the patterns U; and Us, respec-
tively. The indexes aj and by represent the starting and ending
points of the kth alignment in V associated with a DTW
distance measure dy.

In our experiments, to compare our results with other land
use/cover products, we produced maps matching the agricul-
tural calendar from July to June (gray area in Fig. (4)). We find
the pattern that has the lowest DTW distance to a subsequence
V\Z’Z partly contained in the crop calendar. The Fig. (4) shows
the matching of two patterns, U; and Us, that are partially
in the same agricultural year from July 2000 to June 2001. In
this case we pick the one with the lowest DTW distance, i.e.
the most similar pattern for that period.

III. EXPERIMENTS

Phenological cycles are strongly correlated with the seasons,
which can not be completely ignored for the land use and land
cover classification of STIS. Therefore, to assess the impor-
tance of the time dimension in the DTW analysis of SITS,
we tested the performance of four different DTW methods:
i) the original DTW algorithm without time constraints (i.e.
w = 0), ii) DTW with maximum time delay as proposed
by [12], iii) linear time-weighted DTW, and iv) logistic time-
weighted DTW.

We used time series of Enhanced Vegetation Index (EVI)
from July 2000 to June 2013 based on Moderate Resolution
Imaging Spectroradiometer (MODIS) product MOD13-Q1 16
day 250 m. The MODIS EVI product is efficient to capture
the vegetation signal. It has improved sensitivity in high
biomass regions through a canopy background adjustment and
a reduction in the atmosphere influences [27], [28].

The EVI time series is subject to atmospheric effects, such
as cloud cover and path radiance from aerosols [29]. To reduce
the spurious oscillation related to atmospheric effects, we apply
a discrete wavelet decomposition [30] and then filter the time
series by removing the highest wavelet frequency. The wavelet
filter preserves the essential temporal variation and is more
sensitive to vegetation seasonal changes than filters based on
Fourier transform [31].

One scientific problem of particular importance to the au-
thors is understanding changes in Brazilian Amazonia. The

Brazilian Amazonian rain forest occupies an area of 4,100,000
km2 where 720,000 km2 have been deforested since the 1970s
[32]. In the Copenhagen COP-15 Climate Conference in 2009,
Brazil pledged to reduce deforestation in Amazonia by 80%
relative to the average of the period 1996-2005. Brazil is
making good this pledge, as deforestation in Amazonia fell
from 27,700 km2 in 2004 to 4,900 in 2012, decreasing by
83%. Considering the significant impact of land changes in
Amazonia on global biodiversity, emissions, and ecological
services, it is important to understand the driving forces that
cause forest removal [33]. INPE (Brazil’s National Institute
for Space Research) and EMBRAPA (Brazils Agricultural
Research Agency) published recently a study that accounts
for the land use of the deforested areas in Amazonia up to
2008 [34]. The results show that about 63% of the forest
cuts are now used for cattle raising, including clean and
degraded pasture. Cattle ranches in Amazonia use extensive
practices, with less than 1 head of cattle per hectare. Cash
crop agriculture accounts for only 4% of the deforestation.
Moreover, more than 20% of the area has been abandoned and
is now regrowing as secondary vegetation. To achieve further
gains in reducing deforestation and biodiversity loss, we need
to understand the different land use trajectories, including
the deforestation dynamics, land use intensification, and land
abandonment pathways.

We ran a case study in an area in Amazonia, Brazil, with
strong deforestation and cropland expansion in the last decade.
We selected the Porto dos Gatichos municipality, that covers
approximately 7,000 km? and is located in the state of Mato
Grosso, Brazil, inside of the Amazon Biome. In 2013 its total
deforested area was 3023.6 km2, that is 42.9% of the original
forest cover [32]. The cropland area grew from 59.8 km? in
2000 to 580.8 km? in 2013 [35]. We chose the most important
classes for that area: forest, secondary vegetation, pasture,
single cropping, and double cropping. These classes are the
most relevant ones for our study on trajectories of change in
Amazonia.

Our classification method requires a set of temporal pat-
terns of the chosen land use/cover classes. Each pattern is
the averaged EVI signal for a land cover class according
to the agricultural calendar from July to June. We defined
the temporal patterns of forest, pasture, single cropping, and
double cropping based on the paper by [36], that presented
typical temporal patterns of EVI for different crops and natural
vegetation for the same region of our case study. Each class
has one or two patterns that are showed in Fig. (5).

Since the EVI profile of “forest” and ”secondary vegetation”
is similar, after we find the best pattern for each map we split
our “forest” class into “forest” and “secondary vegetation”.
This requires a land cover transition rule to split the “forest”
class. Areas matching a forest pattern were classified as forest
only if they were also classified as forest in previous years.
Otherwise, we classified them as secondary vegetation. For the
first year of the time series the areas matching a forest pattern
are classified as forest, and therefore there is no secondary
vegetation in the first year of our classification.

To assess our classification algorithm we used 40 random
selected spatial location from 2001 to 2014 that sums up to 489
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Fig. 5: Temporal patterns of EVI MODIS 16 days. Adapted
from [36].

TABLE I: Equivalent classes for comparison between the
TWDTW classification and MODIS land cover collection 5,
Plant Functional Type (PFT).

Aggregated MODIS PFT TWDTW
Evergreen Needleleaf trees, Forest, and

Forest Evergreen Broadleaf trees, Secondary Vegetation
and Deciduous Broadleaf trees

Pastureland Shrub Pasture
and Grass

Cereal crops,
and Broad-leaf crops

Single cropping

Cropland and Double cropping

samples. The samples were classified by visual interpretation
of Landsat images using the Google Earth Engine [37]. To
separate our classes we used a set of images corresponding to
the agricultural year from July to June. For each year we used
at least 4 images showing different phenological stages of the
vegetation that allow us to distinguish: forest, pasture, single
cropping, and double cropping.

We compared the accuracy of our classification and the
MODIS land cover collection 5, Plant Functional Type (PFT)
500 m [38] based on our validation points. In order to compare
our results with MODIS PFT we used the equivalent classes in
Table 1. Originally, the study area was covered by forest, and
therefore, the other land cover types that appear later result
from human activities. We aggregated the MODIS categories
of trees to a class called forest. We also assume that MODIS
shrub and grass classes are used as pastureland for cattle
raising, and the categories of cereal crops and broad-leaf crops
are aggregated to a class called cropland. Other MODIS classes
are less than 0.008% of the pixels in this area, and thus they
were not considered in this paper.

We also compared our forest area with estimations by the
Amazon Monitoring Program PRODES [32], and the cropland
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Fig. 6: Linear and logistic time-weight. The logistic weight
has midpoint 8 = 100 days and steepness o = 0.1.

area with the Brazilian national cropland surveys [35], which
is the only existing source of annual information on land use.
The cropland survey estimates come from public and private
agents involved in the crop production and trade.

IV. RESULTS

The logistic time-weighted DTW had the best performance
for « = 0.1 and § = 100days (global accuracy 87.32%),
meaning a low penalty for time warps smaller then 60 days
and significant costs for bigger time warps Fig. (6). In the
algorithm proposed by [12] we tested maximum time delays
ranging from 30 to 130 days, and found the best performance
when the delay was set to 100days with global accuracy
84.66%. The linear Time-Weighted DTW had global accuracy
81.6% and the DTW without time restrictions only 70.14%.

The Table II shows the accuracy assessment of the four
DTW approaches based on 489 reference samples classified
from the Landsat images. In general, the logistic TWDTW
had higher accuracy than the other approaches. Although the
logistic TWDTW had lower user accuracy than the linear
TWDTW for double cropping and forest, its producer accuracy
was higher than the linear TWDTW for these classes (cf.
Table II). This means that the logistic TWDTW classified
more ground truth pixels as such, but with a slightly lower
confidence than the linear TWDTW for pixels classified as
double cropping and forest. The logistic TWDTW had the
same value of sensitivity for double cropping as the maximum
delay DTW (i.e. producer accuracy 90.43%), but with larger
confidence for this class, user accuracy 92.04% in comparison
to 88.89%.

The confusion matrices of the four DTW approaches are
showed in Table III. The linear TWDTW classified 24 pixels
of double cropping and 34 pixels of pasture as single cropping,
and therefore, its confidence for single cropping was only
60.27% (cf. Table II). The logistic TWDW classified 10 pixels
of double cropping and 18 pixels of pasture as single cropping,
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TABLE II: Accuracy assessment for each class based on 489 reference samples classified from the Landsat images.

Method Double cropping Forest Pasture Single cropping

User (%) Producer (%) User (%) Producer (%) User (%) Producer (%) User (%) Producer (%)
DTW without time restrictions 74.65 46 88.51 72.64 79.53 80.47 50.00 77.78
DTW with maximum delay of 100 days 88.89 90.43 93.00 87.74 88.20 84.02 72.82 75.76
Linear TWDTW 96.70 76.52 96.81 85.85 83.54 78.11 60.27 88.89
Logistic TWDTW for o = 0.1 and 8 = 100 days 92.04 90.43 94.00 88.68 88.41 85.80 75.00 84.85

TABLE III: Confusion matrices based on 489 reference sam-
ples classified from the Landsat images.

Reference (%)
Predicted (%) Double cropping Forest Pasture Single cropping
DTW without time restrictions

Double cropping 53 2 4 12
Forest 0 77 7 3
Pasture 5 25 136 5
Single cropping 57 1 19 77
Unclassified 0 1 3 2
DTW with maximum delay of 100 days

Double cropping 104 1 1 11
Forest 0 93 7 0
Pasture 2 11 142 6
Single cropping 9 1 18 75
Unclassified 0 0 1 7
Linear TWDTW

Double cropping 88 0 0 3
Forest 0 91 3 0
Pasture 3 15 132 8
Single cropping 24 0 34 88
Unclassified 0 0 0 0
Logistic TWDTW for « = 0.1 and 8 = 100 days

Double cropping 104 0 0 9
Forest 0 94 6 0
Pasture 1 12 145 6
Single cropping 10 0 18 84
Unclassified 0 0 0 0

which means a higher confidence than the linear TWDTW
classification for single cropping, 75.00%. These results of
the logistic TWDW were similar to the results obtained using
the maximum time delay DTW, which classified 9 pixels of
double cropping and 18 pixels of pasture as single cropping.
However, the logistic TWDTW had higher sensitivity than the
maximum time delay DTW (84.85% in comparison to 75.76%
cf. Table II), that classified 11 pixels as double cropping, 6 as
pasture and unclassified other 7 pixels out of 99 pixels of single
cropping.

For the aggregated classes in Table I the logistic TWDTW
had global accuracy 91.21% that is higher than the global
accuracy of MODIS land cover collection 5 PFT, 79.36%.
The accuracy assessment of the logistic TWDTW and the
MODIS land cover is showed in Table IV. The logistic
TWDTW had higher user and producer accuracies than the
MODIS classification for all classes. Although, MODIS had
high user accuracy for forest (87.2%) and cropland (89.33%),
its producer accuracy for these classes was low, 77.37% and
75.28%, respectively.

We also compared the classification results with the Brazil-
ian national cropland surveys [35]. Fig. (7) shows the area
of single cropping and double cropping estimated by using

TABLE IV: Assessment of MODIS collection 5 Plant Func-
tional Type (PFT) and logistic TWDTW based on 489 refer-
ence samples classified from the Landsat images. The classes

forest, pastureland, and cropland were aggregated according to
Table I.

User (%) Producer (%)
Class MODIS TWDTW MODIS TWDTW
Forest 87.23 94.00 77.36 88.68
Pastureland ~ 67.71 8841 8553 85.80
Cropland 89.33 92.00 75.28 96.73
Double cropping

2= Cropland survey

0.8 =
. TWDTW
04 — I

00= — = =m
Single cropping
N
E12=
x
éOS—
1ldaadaldan
<0 - B | |
Total cropping
1.2 =
0.8 =
00 - -— l
| | | | | | |
2001 2003 2005 2007 2009 2011 2013
Year

Fig. 7: Total area of double cropping and single cropping in
Porto dos Gatchos estimated by TWDTW and the Brazilian
national cropland survey [35].

the logistic TWDTW algorithm and the Brazilian national
cropland survey [35] for Porto dos Gaudchos. There is a general
agreement between our results and the crop surveys, except in
the years 2009 and 2010.

The total forest (pristine forest) and the secondary vegetation
areas are presented in Fig. (8). The forest area estimated using
the logistic TWDTW is in line with the area estimated by
PRODES [32]. Most of the deforestation occurred before 2005,
which was followed by an increase of the secondary vegetation
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Fig. 9: Total area of pasture, single cropping, and double
cropping from 2001 to 2013 estimated using logistic TWDTW
for Porto dos Gauchos.

area in 2007.

The total agricultural areas (pasture, single cropping, and
double cropping) are showed in Fig. (9). In the time series, the
pasture and single cropping areas were increasing until 2006,
while the double cropping area has a growing trend during
the whole period. In the last two years of the time series, the
double cropping exceeded the single cropping area.

The Fig. (10) shows the spatial distribution of land use and
land cover in Porto dos Gatichos for each second agricultural
year from 2001 to 2013. In the last decade, a cropland
intensification has happened in the East part of Porto dos
Gatchos while pasture expansion has taken place in the West
part.

V. DISCUSSION

The results show that it pays to have a flexible approach to
temporal restrictions when using DTW for land cover and land
use classification. Completely disregarding the time dimension,
as the original DTW method does, precludes an accurate land
use and land cover classification. The maximum time delay,
proposed by [12], is flexible for small time warps. However it
forces the dynamic algorithm, Eq. (5), to map the warping
path inside of a limiting time window that can preclude
the classification of some areas (cf. unclassified samples in
Table III). A large cost for small time warps, as the linear
TWDTW method does, harms the classification and reduces its
sensitivity. The linear TWDTW had low producer’s accuracy
respectively 78.11%, 76.52%, when classifying pasture and
double cropping (cf. Table II). The phenological cycles in
agricultural areas, i.e. pasture, double cropping, and single
cropping, have great inter-annual variability depending on
climate conditions and land management. The time constraints
included in the DTW similarity measure should be flexible
to handle with the small phase changes related to natural
phenological variability. The logistic TWDTW had better
results for these land use classes, because of its low penalty for
small time warps and its significant costs for large time warps.
Its better accuracy derives from its flexibility to find the best
match between a pattern and an interval within a long-term
time series.

The logistic TWDTW classification and other land use and
land cover products are generally comparable. For example,
our classification was in line with Brazilian national cropland
surveys, except in the years 2009 and 2010, Fig. (7). In these
years, it is likely that the cropland area has been underesti-
mated in the survey because the large variations between 2008
and 2009 and between 2010 and 2011 are difficult to explain
otherwise. Since the time-weighted DTW is a direct measure
of the cropland area and its results are spatially distributed,
we consider the TWDTW estimations more consistent than
the cropland survey estimations.

The forest area estimated using the logistic TWDTW was
similar to the forest area from the Amazon Monitoring Pro-
gram (PRODES) Fig. (8). However, our algorithm gave higher
estimates for the forest area until 2006 and lower estimates
during the subsequent years. The higher forest area estimated
by the logistic TWDTW compared to PRODES in the first
years of the time series is likely related to their different scale
of analysis. While we used MODIS images with 250 m spatial
resolution the PRODES project uses 30 m Landsat images.
Therefore PRODES is capable of detecting deforestation in
small areas that may not be detected at the MODIS resolution.

In the second part of the graphic in Fig. (8), the lower forest
area estimated by our method was caused by the transition
rule used in our algorithm to separate the secondary vegetation
from the forest. Applying this rule an area that changes from
forest to any other land class cannot become forest again. For
example, after a degradation event (e.g. by fire) the area is
classified as secondary vegetation in our algorithm, cf. Fig.
(11). Therefore, our estimation reduces from the forest area
both deforested and degraded areas, whereas PRODES reduces
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Fig. 10: Land use/cover maps produced by using the logistic TWDTW classification. Each map shows the classification for an
agricultural year (from July to June) in Porto dos Gatichos.
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Fig. 11: An example of a classification using the transition
rules. This is a sample time series inside of a burned area.
This area was degraded in 2011 according to the Detection of
Forest Degradation Program (DEGRAD) [39].

from the forest area only the deforestation by clear-cutting, i.e.
it reduces the forest area only when most or all the trees are
uniformly removed.

VI. CONCLUSION

In this paper we propose a Time-Weighted Dynamic Time
Warping algorithm based method for land use and land cover
classification of remote sensing time series. The method is
a variation of the well-known dynamic time warping (DTW)
method for data mining in time series. DTW works with a
small amount of patterns training samples. We extended DTW
to include a temporal restriction that accounts for the inter-
annual variability of land cover classes. In the paper, we show
that the method achieves a high accuracy for mapping classes
of single cropping, double cropping, forest, and pasture in a
tropical forest area.

We compared the proposed algorithm with alternative meth-
ods of using the dynamic time warping technique for land
cover and land use mapping. Among the other tested variations
of DTW, the algorithm without time restrictions had the worst
results. The linear TWDTW method, that has a large time-
weight, also has unsatisfactory results. The second-best result
was obtained by the DTW method with a fixed time delay. The
time-weighted DTW had better results than the alternatives that
use DTW, and also achieved good overall results, with a global
accuracy of 87.32%.

Our classification using the logistic TWDTW has higher
accuracy and spatial resolution than the MODIS land cover
product. Forest and cropland areas are in line with the Amazon
Monitoring Program PRODES and with the Brazilian national
cropland surveys, respectively. These results highlight the
potential of the TWDTW to improve land use and land cover
products and contribute to agricultural statistics.
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